- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gellman, Andrew J (1)
-
Golio, Nicholas (1)
-
Guo, Zhitao (1)
-
Railkar, Rucha (1)
-
Sen, Irem (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kinetic parameters have been estimated for the H2– D2 exchange reaction on a thin film Pd catalyst by fitting reaction data from T = 333 to 593 K over a range of inlet partial pressures, Pin H2 and Pin D2 . A rigorous approach to estimating the 95% confidence regions of the kinetic parameters reveals some of the issues and complexities that are not routinely considered in the estimation of kinetic parameter uncertainty from catalytic data. Three different mechanistic models were used to assess the influence of subsurface hydrogen, H′: the traditional Langmuir–Hinshelwood (LH) mechanism, the Single Subsurface Hydrogen (1H′) mechanism, and the Dual Subsurface Hydrogen (2H′) mechanism. The fitting was performed by fixing the preexponential factors for all Arrhenius rate constants and equilibrium constants to their transition state theory values. The diffusion of H and D atoms from the surface into the subsurface was constrained to be endothermic (i.e. ΔE ss > 0) and represented as an equilibrium process. Performance of the fitting routine was evaluated on a noiseless simulated dataset (created using ΔE‡ ads = 0, ΔE‡ des = 43, and ΔE ss = 25 kJ/mol) and the same simulated dataset with the inclusion of 3% Gaussian noise. In both cases, the solver was able to return the chosen values of ΔE‡ ads , ΔE‡ des , and ΔE ss . Mapping of the behavior of the residual sum of squared errors, 2 , about its global minimum within 3D ( ads , des , ss ) parameter space allowed quantification and visualization of the 95% confidence regions using 2D error ellipses for each pair of fitting parameters. For the experimental dataset on the Pd catalyst, fitting to the LH model predicted that H2– D2 exchange is adsorption rate limited, with ΔE‡ ads = 51.1 ± 0.6 kJ/mol with 95% confidence. On the other hand, fitting to both the 1H′ and 2H′ models led to predictions of ΔE‡ ads = 0, consistent with the current understanding that the barrier to H2 dissociation on Pd is low. Thus, the results detailed herein provide supporting evidence for a non-LH mechanism for H2– D2 exchange on Pd while also illustrating the issues associated with quantification of uncertainty in kinetic parameter estimation.more » « less
An official website of the United States government

Full Text Available